Simultaneous pontine and basal forebrain microinjections of carbachol suppress REM sleep.

نویسندگان

  • H A Baghdoyan
  • J L Spotts
  • S G Snyder
چکیده

This study was performed to test the hypothesis that cholinoceptive basal forebrain systems can significantly influence cholinoceptive pontine mechanisms known to be important for generating rapid eye movement (REM) sleep. This hypothesis was examined by microinjecting the cholinergic agonist carbachol or saline (vehicle control) into the pons, the basal forebrain, or simultaneously into the pons and basal forebrain, while quantifying the effects on sleep and wakefulness in unanesthetized, chronically instrumented cats. All microinjections were made during wakefulness and were followed by 2 or 4 hr of recording. Polygraphic records were scored for wakefulness, non-REM sleep, REM sleep, and the REM sleep-like state evoked by pontine administration of carbachol (DCarb). Dependent variables quantified following each microinjection included the percentage of recording time spent in each state, the latency to onset of non-REM, REM, and DCarb, the number of episodes per hour of each state, and the duration of the longest episode of each state. A total of 149 microinjections were made into 15 forebrain and 11 pontine sites in eight cats. Basal forebrain administration of carbachol significantly increased wakefulness. Pontine microinjection of carbachol produced a state that polygraphically and behaviorally resembled REM sleep. This REM sleep-like state occurred in amounts significantly greater than natural REM sleep. Pontine carbachol also significantly decreased wakefulness and non-REM sleep. Simultaneous injection of carbachol into the pons and basal forebrain enhanced REM sleep, but the magnitude of this enhancement was significantly less than the increase in REM sleep evoked by carbachol injection into the pons alone. The results show that cholinoceptive regions of the basal forebrain can increase wakefulness and reduce the ability of pontine carbachol to evoke the REM sleep-like state. These findings suggest that basal forebrain administration of carbachol activates an arousal-generating system that can successfully compete with the powerful cholinergic REM sleep-generating system of the pons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disinhibition of perifornical hypothalamic neurones activates noradrenergic neurones and blocks pontine carbachol-induced REM sleep-like episodes in rats.

Studies in behaving animals suggest that neurones located in the perifornical (PF) region of the posterior hypothalamus promote wakefulness and suppress sleep. Among such cells are those that synthesize the excitatory peptides, orexins (ORX). Lack of ORX, or their receptors, is associated with narcolepsy/cataplexy, a disorder characterized by an increased pressure for rapid eye movement (REM) s...

متن کامل

THE RAPID EYE MOVEMENT (REM) STAGE OF SLEEP IS CHARACTERIZED BY CORTICAL AND HIPPOCAMPAL ACTIVATION, RAPID EYE MOVEMENTS, SILENCING OF brainstem aminergic neurons, and postural atonia.1 Cholinergic activation

THE RAPID EYE MOVEMENT (REM) STAGE OF SLEEP IS CHARACTERIZED BY CORTICAL AND HIPPOCAMPAL ACTIVATION, RAPID EYE MOVEMENTS, SILENCING OF brainstem aminergic neurons, and postural atonia.1 Cholinergic activation plays an important role in the generation of REM sleep, since pontine microinjections of cholinergic agonists into the pontine reticular formation trigger or enhance a rapid eye movements ...

متن کامل

Muscle atonia is triggered by cholinergic stimulation of the basal forebrain: implication for the pathophysiology of canine narcolepsy.

Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness and rapid eye movement (REM) sleep-related symptoms, such as cataplexy. The exact pathophysiology underlying the disease is unknown but may involve central cholinergic systems. It is known that the brainstem cholinergic system is activated during REM sleep. Furthermore, REM sleep and REM sleep atonia similar to cataple...

متن کامل

REM sleep-like atonia of hypoglossal (XII) motoneurons is caused by loss of noradrenergic and serotonergic inputs.

RATIONALE Studies of hypoglossal (XII) motoneurons that innervate the genioglossus muscle, an upper airway dilator, suggested that the suppression of upper airway motor tone during REM sleep is caused by withdrawal of excitation mediated by norepinephrine and serotonin. OBJECTIVES Our objectives were to determine whether antagonism of aminergic receptors located in the XII nucleus region can ...

متن کامل

Cholinomimetics, but not morphine, increase antinociceptive behavior from pontine reticular regions regulating rapid-eye-movement sleep.

Sleep disruption is a significant problem associated with the subjective experience of pain. Both rapid-eye-movement (REM) sleep and nociception are modulated by cholinergic neurotransmission, and this study tested the hypothesis that antinociceptive behavior can be evoked cholinergically from medial pontine reticular formation (mPRF) regions known to regulate REM sleep. The foregoing hypothesi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 1993